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A single-valued double many-body expansion potential energy surface is reported for ground-state HN2 by
fitting accurate ab initio energies that have been suitably corrected by scaling for the H-N2 and N-NH
regions. The energies of∼900 geometries have been calculated at the multireference configuration interaction
level, using aug-cc-pVQZ basis sets of Dunning and the full valence complete active space wave function as
reference. The topographical features of the novel global potential energy surface are examined in detail.

1. Introduction

Several experimental and theoretical studies have attempted
to elucidate the possible role of the HN2 species as a critical
step in various reactions. Although this molecule has never been
observed experimentally, it has been postulated to be an
important intermediary in thermal De-NOx processes,1,2 with
indirect evidence that suggests its existence through the three
possible product channels proposed for the NH2 + NO reaction:

The experiments that are focused to determine the rate coef-
ficient and the major pathway of reaction 1 are far from
consistent: although the experimental studies vary widely, in
regard to the branching ratio for OH production, none of the
experiments observed H atoms.3 This result, along with the
assumed product channels, argues for the existence of the HN2

species. However, a controversy persists from the kinetics
modeling studies.2,4 In fact, although an estimate of 10-4 s for
the lifetime produces a reasonable match to experimental
observations, the theoretical studies of HN2 unimolecular decay
predict a much shorter value, of 10-8-10-9 s, for the ground
vibrational state.5-7

Many ab initio studies of the reaction

have previously been made to characterize the geometry and
energetics of the reactants, transition state, and products.3 All
previous calculations concluded that the title system is quasi-
bound (the global minimun is located above the H+ N2

asymptote) with a barrier height to dissociation of∼11 kcal/
mol. From such studies, a global potential energy surface was
reported by Walch5,8,9 and Koizumi et al.6 for the H + N2

channel. On the basis of a spline fit of the ab initio points
calculated using the completed active space self-consistent field/
externally contracted configuration interaction (CASSCF/CCI)
method and two different basis sets, Walch and co-workers

predicted, depending on the basis set used, a barrier height of
10.2 or 11.3 kcal/mol and a global minimum of 5.6 or 3.9 kcal/
mol above the H+ N2 asymptote.

In a subsequent paper,10 Walch and Partidge attempted a
conclusive and accurate prediction of the HN2 unimolecular
decomposition. They reported a systematic study of the HN2

energetics using the complete active space self-consistent field/
internally contracted configuration interaction (CASSCF/ICCI)
method and the cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z
basis sets of Dunning.11,12 From such results, an extrapolation
to the complete basis set limit has been obtained, which yields
a barrier height of 11.34 kcal/mol and a global minimum 4.31
kcal/mol above the H+ N2 asymptote. A slight difference
between the constrained minimum path calculated at this level
of theory and the one previously estimated using a potential
energy surface6 induced those authors to conclude “...we are
very confident of the theoretical lifetime predictions for the HN2

radical”.
In a more recent publication, Gu et al.13 reported a high level

CCSD(T)/aug-cc-pVQZ calculation of the stationary points for
the title system. They predict the classical barrier height for
the reaction HN2 f H + N2 to be 10.7 kcal/mol, thus lying 0.6
kcal/mol below the extrapolated value reported by Walch and
Partridge.10 In turn, the calculated13 exothermicity for the
reaction H+ N2 f HN2 is 3.8 kcal/mol, which is, thus, slightly
smaller than the extrapolated value10 of 4.31 kcal/mol. We may
therefore argue that there is not a conclusive result yet for the
HN2 lifetime.

In this work, we report the first realistic global potential
energy surface for the ground electronic state of the title system,
based on the double many-body expansion14-17 (DMBE)
method. Being a potential fragment of larger NxHy species, such
as those of relevance in studying the synthesis of ammonia, it
may also be of crucial importance in constructing the corre-
sponding global DMBE forms for larger hydrogen-nitrogen
polyatomic species. Indeed, this has been a major motivation
for the present work. Specifically, the analytic HN2 DMBE
potential energy surface will be calibrated from∼900 ab initio
points that were calculated at the multireference configuration
interaction (MRCI) level, using the full valence complete active
space (FVCAS) reference function and the aug-cc-pVQZ
(AVQZ) Dunning11,12basis set. The ab initio energies calculated
in this way have been subsequently corrected, using the double
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many-body expansion-scaled external correlation18 (DMBE-
SEC) method to extrapolate to the complete basis set/complete
configuration interaction limits. As usual in DMBE theory,14-17

the potential energy surface so obtained shows the correct long-
range behavior at all dissociation channels while providing a
realistic representation of the surface features at all interatomic
separations (e.g., van der Waals wells at intermediate atom-
diatom separations).

The paper is organized as follows. Section 2 describes the
ab initio calculations that have been performed in the present
work. In Section 3, we examine the analytical representation
of the potential energy surface; specifically, Section 3.1 focuses
on the two-body energy terms, whereas Section 3.2 concentrates
on the three-body energy terms. The main topographical features
of the DMBE potential energy surface are discussed in Section
4. Some concluding remarks are given in Section 5.

2. Ab Initio Calculations

The ab initio calulations have been performed at the MRCI19

level, using the FVCAS20 wave function as reference. This
involves nine active orbitals (7a′ + 2a′′), with the nitrogen 1s
orbitals forming the 1a′ and 2a′ molecular orbitals, having been
left uncorrelated. Such a FVCAS reference wave function
represents a total of 3080 configuration state functions. For the
basis set, we have selected the aug-cc-pVQZ (AVQZ) of
Dunning,11,12 with the correlated ab initio calculations being
performed using the MOLPRO21 package. Approximately 900
grid points have been computed to map the potential energy
surface over the region defined by 1.6e RN2/a0 e 2.8, 1.5e
rH-N2/a0 e 10.0, and 0.0e γ e 90° for H-N2 interactions,
and 1.5e RNH/a0 e 2.4, 1.5e rN-NH/a0 e 6.0, and 0.0e γ e
180° for N - NH interactions;r, R, andγ are the corresponding
atom-diatom Jacobi coordinates.

The ab initio energies calculated in this way have been
subsequently corrected using the DMBE-SEC16 method to
account for the excitations beyond singles and doubles and, most
importantly, for the incompleteness of the basis set. Thus, the
total DMBE-SEC interaction energy is written as

where

and

where R ) {Ri} is a collective variable of all internuclear
distances. In turn, the first two terms of the SEC series expansion
assume the form

Following previous work,16 theFAB
(2) parameter in eq 6 has been

chosen to reproduce the bond dissociation energy of the
corresponding AB diatomic, whileFABC

(3) has been estimated as
the average of the two-bodyF-factors. Such a procedure leads
to the following values:FNN

(2) ) 0.758,FNH
(2) ) 0.948, andFNNH

(3)

) 0.885.

3. Double Many-Body Expansion Potential Energy
Surface

3.1. Two-Body Energy Terms.The diatomic potential curves
have been modeled using the extended Hartree-Fock ap-
proximate correlation energy method for diatomic molecules,
including the united atom limit22 (EHFACE2U), with the
available parameters being determined by fitting experimental
and ab initio data. Thus, they assume the general form15,22

where the label EHF refers to the extended Hartree-Fock type
energy and the label dc indicates the dynamical correlation
energy. As usual, the latter is modeled semiempirically by23

with the damping function for the dispersion coefficients
assuming the form

In eq 10,An andBn are auxiliary functions that are defined by

whereR0, â0, R1, andâ1 are universal dimensionless parameters
for all isotropic interactions:14,15R0 ) 16.36606,R1 ) 0.70172,
â0 ) 17.19338, andâ1 ) 0.09574. In turn, the scaling parameter
F is defined as

whereR0 ) 2(〈rA
2 〉1/2 + 〈rB

2〉1/2) is the LeRoy24 parameter for
onset the undampedR-n expansion, and〈rX

2 〉 is the expectation
value of the squared radius for the outermost electrons of atom
X (where X) A, B). Finally, the exponential decaying portion
of the EHF-type energy term assumes the general form

where

r ) R - Re is the displacement from the equilibrium diatomic
geometry, andD andai (i ) 1,...,n) are adjustable parameters
to be obtained as described elsewhere.15,22 Specifically, the
potential curve of ground-state N2(X1Σ+) has been calibrated
by fitting simultaneously vibrational frequencies, Rydberg-
Kleing-Rees (RKR) turning points,25 and the ab initio energies
calculated in the present work for the repulsive wing. Figure 1
shows that the final potential curve reproduces our calculated

V ) VEHF(R) + Vdc(R) (8)

Vdc(R) ) - ∑
n)6,8,10

Cn øn(R)R-n (9)

øn(R) ) [1 - exp(-An
R
F

- Bn
R2

F2)]n

(10)

An ) R0n
-R1 (11)

Bn ) â0 exp(-â1n) (12)

F ) 5.5+ 1.25R0 (13)

VEHF(R) ) -
D

R
(1 + ∑

i)1

n

air
i) exp(-γr) (14)

γ ) γ0[1 + γ1 tanh(γ2r)] (15)

V(R) ) VFVCAS(R) + VSEC(R) (3)

VFVCAS(R) )

∑
AB

VAB,FVCAS
(2) (RAB) + VABC,FVCAS

(3) (RAB, RBC, RAC) (4)

VSEC(R) ) ∑
AB

VAB,SEC
(2) (RAB) + VABC,SEC

(3) (RAB, RBC, RAC) (5)

VAB,SEC
(2) (RAB) )

VAB,FVCAS-CISD
(2) (RAB) - VAB,FVCAS

(2) (RAB)

FAB
(2)

(6)

VABC,SEC
(3) (RAB, RBC, RAC) )
VABC,FVCAS-CISD

(3) (RAB, RBC, RAC) - VABC,FVCAS
(3) (RAB, RBC, RAC)

FABC
(3)

(7)
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ab initio energies. In turn, for ground-state imidogen, NH(X3Σ-),
we have used a previously reported potential energy curve26

calibrated from the MRCI+Q ab initio points of Stallcop et al.27

The numerical values of all the parameters are, for both diatomic
potentials, gathered in Table 1.

3.2. Three-Body Energy Terms.In regard to the two-body
energies, the three-body energy splits into several contributions.
First, the three-body energy is divided into an extended Hartree-
Fock part and a dynamical correlation part. For the three-body
dynamical correlation, we select the form that was proposed
elsewhere by one of us28 for the water molecule, namely

where thei label represents the I-JK channel associated with
the center of mass separationri, Ri is the J-K bond distance,
and cosθi ) rbiRBi/|rbiRBi|. (For the notation, see Figure 1 of ref
16.) For n ) 6, 8, and 10,Cn

(i)(Ri,θi) are atom-diatom
dispersion coefficients, which are given by

where PL(cos θi) denotes theL-th term of the Legendre
polynomial expansion. In addition, the functionøn(ri) in eq 16
is the corresponding diatomic damping function. Moreover,fi(R)
is a switching function that is chosen from the requirement that

its value must be+1 atRi ) Ri
e andri f ∞, and 0 whenRi f

∞. One such form is28

wheresi ) Ri - Ri
e (corresponding expressions apply tosj, sk,

fj, andfk) andη is a constant that is chosen to ensure the proper
asymptotic behavior. Following previous work,28 we adopt a
value ofη ) 3. In addition, the parameterê has been assumed
to be equal to 1.0a0

-1. Regarding the damping functionøn(ri),
we still adopt eq 10 but replaceR by the center-of-mass
separation for the relevant atom-diatom channel. In addition,
the value ofF has been assumed by consideringR0 in eq 13 as
the average of the LeRoy parameters for NO and SiH, which
leads to a value ofF ) 15.9.

3.3. Three-Body Dynamical Correlation Energy.TheL )
0, 2, and 4 components of the atom-diatom dispersion
coefficients have been considered, with the involved internuclear
dependences being estimated as reported elesewhere,29 i.e., using
the dipolar polarizabilities calculated in the present work at the
MRCI level of theory jointly with the generalized Slater-
Kirkwood approximation.30 The atom-diatom dispersion coef-
ficients thus calculated were then fitted to the form

wherer ) R - RM is the displacement relative to the position
of the maximum. The parameters that resulted from such fits
are reported in Table 2, whereas the internuclear dependences
of the dispersion coefficients are shown in Figure 2.

As noted elsewhere,28 eq 16 causes an overestimation of the
dynamical correlation energy at the atom-diatom dissociation
channels. To correct such a behavior, we have multiplied the
two-body dynamical correlation energy for thei-th pair byfi(R)
and correspondingly for channelsj and k. This ensures28 that
the only two-body contribution at thei-th channel is that of
JK.

3.4. Three-Body Extended Hartree-Fock Energy. By
removing, for a given triatomic geometry, the sum of the two-
body energy terms from the corresponding DMBE-SEC
interaction energies (eq 3), which was defined with respect to
the infinitely separated ground-state atoms, one obtains the total
three-body energy. Therefore, by subtracting the three-body
dynamical correlation contribution (eq 16) from the total three-
body energy that is calculated in that way, one obtains the three-
body extended Hartree-Fock energy contribution. To represent
the latter, we use the following three-body distributed-
polynomial31 form:

whereP(j)(Q1, Q2, Q3) is thej-th polynomial. To the sixth order,
this assumes the form

Figure 1. EHFACE2U potential energy curves for NH(3Σ-) and
N2(1Σg). Key for symbols: (O) Rydberg-Kleing-Ress (RKR) data and
(b) ab initio points.

TABLE 1: Parameters in the Two-Body Energy Curves

NH(X3Σ-) N2(X1Σg
+)

Re (a0) 1.9650 2.0743
D (Eh) 0.229 034 01 0.702 119 20
a1 (a0

-1) 2.146 641 73 2.211 672 95
a2 (a0

-2) 0.844 712 52 0.991 485 45
a3 (a0

-3) 0.525 908 29 1.553 769 29
γ0 (a0

-1) 1.563 792 1.678 669
γ1 (a0

-1) 0.661 116 0.674 118
γ2 (a0

-1) 0.282 985 0.716 957
R0 (a0) 6.7560 6.5938
C6/(Eha0

-6) 12.27 22.8
C8/(Eha0

-8) 232.6 442.6
C10/(Eha0

-10) 5775 9722

Vdc
(3) ) ∑

i
∑

n

fi(R)Cn
(i)(Ri,θi)øn(ri)ri

-n (16)

Cn
(i) ) ∑

L

Cn
LPL(cosθi) (17)

fi ) 1
2

{1 - tanh[ê(ηsi - sj - sk)]} (18)

Cn
A-BC(R) )

Cn
AB + Cn

AC + DM(1 + ∑
i)1

3

air
i) exp(-a1r - ∑

i)2

3

bir
i) (19)

VEHF
(3) ) ∑

j)1

5

P(j)(Q1, Q2, Q3)∏
i)1

3

{1 - tanh[γi
j(Ri - Ri

j,ref)]}

(20)
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whereS2a
2 ) Q2

2 + Q3
2, S2b

2 ) Q2
2 - Q3

2, andS3
3 ) Q3

3 - 3Q2
2Q3,

with Qi (i ) 1-3) being symmetry coordinates that are defined,
for the j-th polynomial, by

where the superscript “ref” means a reference geometry. Figure
3 displays the reference geometries that are used to define the
displacement coordinates used to write the five EHF-type
polynomials in eq 20. Note that the first and second polynomials
(which refer to the first and second sets of coefficients in Table
3) are respectively centered in structures a) and b) of Figure 3.
In turn, two other polynomials use the same set of coefficients
(the third column of Table 3), which are centered in structure
c) of Figure 3. The last polynomial,P(5)(Q1, Q2, Q3), is centered
at reference geometry d) in Figure 3, which lies close to the
equilibrium structure of the weakly bound H‚‚‚N2 van der Waals
species. Note that this includes up to cubic terms only, because
this proved to be sufficient for our fitting purposes. To obtain
Ri

j,ref, we have first assumed their values to coincide with the

Figure 2. Dispersion coefficients for atom-diatom asymptotic chan-
nels of HN2, as a function of the corresponding internuclear distance
R.

TABLE 2: Numerical Values of the Parameters in eq 19

C6
0(R) C6

2(R) C8
0(R) C8

2(R) C8
4(R) C10

0 (R)

H-N2

RM (a0) 3.5667 3.5090 3.5026 3.4863 3.4870 3.4608
DM (Eh) 4.7294 3.7419 178.7058 298.9732 22.9832 7028.8116
a1 (a0

-1) 1.277 799 82 0.851 582 13 1.131 083 35 0.884 602 42 0.879 306 21 1.090 186 28
a2 (a0

-2) 0.300 410 55 0.184 349 94 0.277 939 09 0.196 563 42 0.198 953 65 0.275 794 87
a3 (a0

-3) -0.003 100 54 -0.000 969 88 -0.000 106 74 -0.000 933 54 0.000 965 52 0.001 704 86
b2 (a0

-2) 0.315 677 76 0.269 098 43 0.135 718 43 0.293 195 75 0.945 261 28 0.096 086 57
b3 (a0

-3) 0.047 870 65 0.028 844 54 0.009 978 24 0.044 310 67 0.216 377 09 0.006 945 65

N-NH
RM (a0) 3.4400 3.2316 3.4371 3.2506 3.2187 3.4352
DM (Eh) 5.8549 5.5978 143.9529 379.7076 31.0459 4394.6574
a1 (a0

-1) 1.595 253 94 1.026 484 21 1.584 495 87 0.931 566 40 1.644 505 86 -0.073 743 22
a2 (a0

-2) 0.708 758 04 0.270 832 16 0.703 651 10 0.182 778 32 0.86 5513 27 -0.607 106 28
a3 (a0

-3) 0.104 478 27 0.015 983 88 0.103 522 65 -0.001 626 53 0.139 612 00 0.497 138 66
b2 (a0

-2) 0.284 813 14 0.270 234 30 0.289 780 70 0.318 737 43 0.684 793 26 0.553 195 06
b3 (a0

-3) 1.0× 10-8 1.0× 10-8 1.0× 10-8 1.0× 10-8 1.0× 10-8 0.106 836 28

Figure 3. Reference geometries (with distances in atomic units, a.u.)
for the three-body EHF portion of the potential energy surface. See
text for details.

(Q1

Q2

Q3
) ) (x1

3 x1
3 x1

3

0 x1
2

-x1
2

x2
3

-x1
6

-x1
6

) (R1 - R1
j,ref

R2 - R2
j,ref

R3 - R3
j,ref) (22)

Pj(Q1, Q2, Q3) ) c1 + c2Q1 + c3Q3 + c4Q1
2 + c5S2a

2 +

c6Q1Q3 + c7S2b
2 + c8Q1

3 + c9Q1S2a
2 + c10S3

3 + c11Q1
2Q3 +

c12Q1S2b
2 + c13Q3S2a

2 + c14Q1
4 + c15Q1

2S2a
2 + c16S2a

4 +

c17Q1S3
3 + c18Q1

3Q3 + c19Q1
2S2b

2 + c20Q1Q3S2a
2 + c21Q3S3

3 +

c22S2a
2 S2b

2 + c23Q1
5 + c24Q1

3S2a
2 + c25Q1S2a

4 + c26Q1
2S3

3 +

c27S2a
2 S3

3 + c28Q1
4Q3 + c29Q1

3S2b
2 + c30Q1

2Q3S2a
2 +

c31Q1Q3S3
3 + c32Q1S2a

2 S2b
2 + c33Q3S2a

4 + c34S2b
2 S3

3 + c35Q1
6 +

c36Q1
4S2a

2 + c37Q1
2S2a

4 + c38Q1
3S3

3 + c39Q1S2a
2 S3

3 + c40S2a
6 +

c41S3
6 + c42Q1

5Q3 + c43Q1
4S2b

2 + c44Q1
3Q3S2a

2 + c45Q1
2Q3S3

3 +

c46Q1
2S2a

2 S2b
2 + c47Q1Q3S2a

4 + c48Q1S2b
2 S3

3 + c49Q3S2a
2 S3

3 +

c50S2a
4 S2b

2 (21)
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bond distances of the associated stationary points, and, subse-
quently, relaxed this condition via a trial-and-error least-squares

fitting procedure. The nonlinear range-determining parameters
γi

j have been optimized in a similar way. Thus, the complete
set of parameters totals 160 linear coefficientsci, 15 nonlinear
coefficientsγi

j, and 15 reference geometriesRi
j,ref. Their opti-

mal numerical values are collected in Table 3. A total of 913
points have been used for the calibration procedure, with the
energies covering a range up to 500 kcal/mol above the H+
N2 asymptote.

Table 4 shows the stratified root-mean-square deviation
(rmsd) values of the final potential energy surface, with respect
to the fitted and nonfitted ab initio energies. This table shows
that the final potential energy surface is able to fit the region of
major chemical interest (308 ab initio points with energies up
to 40 kcal/mol) with a high accuracy (rmsd) 0.256 kcal/mol).
This region includes the global minimum and the transition state
for the H + N2 dissociation process. The major deviations
correspond to points close to the conical intersection (thus, they
have not been included in the fitting procedure, to warrant a
behavior of the final single-valued form that is as smooth as
possible) and at high repulsive regions of the potential surface.
Clearly, the DMBE potential energy surface that has been
obtained in this way accurately reproduces all fitted and
nonfitted ab initio points, up to 500 kcal/mol.

Figure 4 illustrates the quality of the final fitted form. The
profiles correspond to minimum energy cuts for 10 distinct
values ofγ, whereas the displayed ab initio points form a small
set of the total number of points used in the fitting procedure;
they have been calculated by optimizingRN2 at specified values
of γ and rH-N2. The two conical intersections that result for
T-shaped and linear configurations are clearly visible in Figure

TABLE 3: Numerical Values of the Extended
Hartree-Fock Energy (eq 20)

coefficient P(1) P(2) P(3) + P(4) P(5)

c1 (a0
0) -35.35722711 50.89357137 0.64204663-0.00037787

c2 (a0
-1) 1.43122305 -8.20511664 -1.57901897-0.00190090

c3 (a0
-1) -9.87617675 -44.75381891-0.94137581-0.00261274

c4 (a0
-2) -18.80416915 26.48543000 1.81933025 0.00029084

c5 (a0
-2) -21.78867083 32.57491690 0.60735250-0.00057451

c6 (a0
-2) -11.07940674-33.13037794 0.52335000-0.00038871

c7 (a0
-2) 5.01128977 5.08772061 0.25855378 0.00055106

c8 (a0
-3) 0.96613480 -3.99536563 -1.18504903 0.

c9 (a0
-3) -0.77697807 10.11891334-0.63735021-0.00076654

c10 (a0
-3) -0.92099871 4.10517993 0.12413155 0.

c11 (a0
-3) -6.01375589 -16.78809143-0.38833222-0.00104352

c12 (a0
-3) 0.90509055 -16.20351814 0.11928222 0.00074255

c13 (a0
-3) -514061355 -17.17930402-0.82128727 0.

c14 (a0
-4) -3.40765945 3.78922878 0.63973511 0.

c15 (a0
-4) -1.88077926 3.13322630 -0.26288962 0.

c16 (a0
-4) -2.68379376 5.69616150 0.17067403 0.

c17 (a0
-4) 4.45588653 -5.81699928 -0.18560723 0.

c18 (a0
-4) -4.05543497 -7.84835242 0.12054093 0.

c19 (a0
-4) 1.70217322 -11.08806364-0.17812786 0.

c20 (a0
-4) -3.39696345 -5.64359911 0.34470547 0.

c21 (a0
-4) 0.52809629 1.62229042 -0.24358630 0.

c22 (a0
-4) 0.96757611 1.49907056 0.29036290 0.

c23 (a0
-5) 0.07042292 -0.52463644 -0.18613603 0.

c24 (a0
-5) -1.13489314 2.85006561 0.39057365 0.

c25 (a0
-5) 1.21500520 0.84486292 -0.10864732 0.

c26 (a0
-5) 0.90416261 -3.39970612 -0.08699980 0.

c27 (a0
-5) -0.37424676 0.07267052 -0.09095443 0.

c28 (a0
-5) -1.41649184 -0.91682855 -0.10631151 0.

c29 (a0
-5) -0.04756769 -1.68254925 0.26417945 0.

c30 (a0
-5) 0.61305975 -3.72605017 0.33025474 0.

c31 (a0
-5) 1.84502268 3.16507583 0.00837542 0.

c32 (a0
-5) -0.58400452 -1.42401824 -0.07300291 0.

c33 (a0
-5) -0.13609210 -2.12175750 -0.21211357 0.

c34 (a0
-5) -0.05015587 1.04011399 0.23138290 0.

c35 (a0
-6) -0.12738976 0.02661556 0.03395371 0.

c36 (a0
-6) 0.62237114 -0.02032757 -0.18379018 0.

c37 (a0
-6) 0.10324812 0.78316160 0.05864884 0.

c38 (a0
-6) -0.42328134 -0.45490030 -0.05717854 0.

c39 (a0
-6) 0.76664528 -0.77298638 0.03477564 0.

c40 (a0
-6) -0.21436778 0.45857204 0.00603242 0.

c41 (a0
-6) -0.03021494 0.16268811 -0.04950996 0.

c42 (a0
-6) -0.17424122 0.08238406 -0.03113967 0.

c43 (a0
-6) 0.10050895 -0.35417930 0.04913502 0.

c44 (a0
-6) 0.61827911 -1.07342606 -0.00694684 0.

c45 (a0
-6) 0.42896861 1.11079450 0.04085605 0.

c46 (a0
-6) -0.37356092 -0.70735541 -0.27048435 0.

c47 (a0
-6) 0.29520788 -1.15920924 -0.04881234 0.

c48 (a0
-6) -0.37797059 0.53374300 -0.18376155 0.

c49 (a0
-6) 0.23373482 0.20831280 0.02121087 0.

c50 (a0
-6) 0.16170869 -0.34419861 0.15943928 0.

γ1
j (a0

-1) 1.30 0.40 1.55 1.00

γ2
j (a0

-1) 1.10 1.35 -0.55a 0.35

γ3
j (a0

-1) 1.10 1.35 1.55a 0.35

R1
j,ref (a0) 2.00 2.60 2.05 2.08

R2
j,ref (a0) 2.50 2.05 1.95b 7.00

R3
j,ref (a0) 2.50 2.05 4.00b 7.00

a The values indicated should be interchanged when writing poly-
nomialsP3 andP4. b See footnote a.

Figure 4. Selected cuts of the HN2 potential energy surface. The figure
shows 10 minimum energy cuts for fixed values ofγ as a function of
the distancerH-N2. Note the avoided crossing for T-shaped and linear
configurations. Unfilled points correspond to geometries close to the
conical intersection, which have not been included in the least-squares
fitting procedure.

TABLE 4: Stratified Root-Mean-Square Deviations

energy
(kcal/mol) number of points

maximum deviation
(kcal/mol) rmsda

20 224 0.90 0.152
40 308 2.36 0.256
60 540 9.06 0.620
80 570 9.06 0.714

100 597 9.06 0.765
200 825 10.06 0.935
300 887 10.06 0.982
500 913 10.06 1.070

a Root-mean-square deviation.
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4. We emphasize that the regions close to such topological
features are smoothed out (i.e., they resemble avoided intersec-
tions) in the single-valued representation used in the present
work. Thus, the points close to the actual crossing seam
(indicated in the plot as unfilled circles) have not been included
in the fitting procedure, to avoid spoiling its quality at the
regions of more chemical interest.

4. Major Features of Potential Energy Surface

Figures 5 and 6 illustrate the major topographical features of
the HN2 DMBE potential energy surface that has been calculated
in the present work. Specifically, Figure 5 shows energy
contours for a H atom moving around a N2 ground-state diatomic
whose bond length is partially relaxed for each position of the
H atom. The corresponding plot for a N atom moving around
NH is presented in Figure 6. The salient features from these
plots are some of the most relevant stationary points for the

title system. A characterization of their attributes (geometry,
energy, and vibrational frequencies) is reported in Table 5. Also
included for comparison in this table are the results that have
been obtained from other potential energy surfaces. Note that
we have calculated a denser grid of energies in the vicinity of
some stationary points which were then used to fit a local
polynomial form to obtain an optimum prediction of the
spectroscopic properties at the correlated ab initio level. Table

Figure 5. Isoenergy contour plot for a H atom moving around a
partially relaxed N2 diatomic (1.8a0 e RN2 e 2.4a0), which lies along
thex-axis with the center of the bond fixed at the origin. Contours are
equally spaced by 0.005Eh, starting at-0.3640Eh. Contours in dashed
lines emphasize the van der Waals minimum; they are equally spaced
by 0.000005Eh, starting at-0.36414Eh. Also shown are the calculated
ab initio points for the H atom moving around N2 diatomic, whose
bond distance varied over a range from 1.6a0 to 2.8a0.

Figure 6. Isoenergy contour plot for a N atom moving around a
partially relaxed NH diatomic (1.8a0 e RNH e 2.3a0), which lies along
thex-axis with the center of the bond fixed at the origin. Contours are
equally spaced by 0.01Eh, starting at-0.355Eh. The contours in dashed
are equally spaced by 0.0002Eh, starting at-0.1340Eh. Also shown
are the calculated ab initio points for the N atom around a NH diatomic,
whose bond distance varied over a range from 1.5a0 to 2.4a0.

Figure 7. Isoenergy contour plot for the stretching of the two NH
bonds in linear N-H-N. Contours are equally spaced by 0.009Eh,
starting at-0.1335 Eh. The two equivalent structures NH‚‚‚N and
N‚‚‚HN indicate linear transition states, which appear as hydrogen-
bonded minima, with respect to the stretching coordinate (see text).

TABLE 5: Stationary Points of the DMBE Potential Energy
Surface, for Various Features

property MRCIa CASSCF/CCIb PESc DMBEd

Global Minimun
R1 (a0) 2.227 2.253 2.250 2.226
R2 (a0) 3.586 3.556 3.599 3.595
R3 (a0) 1.981 2.017 1.966 1.983
V (Eh) -0.3568 -0.3568
∆Ve (kcal/mol) 4.52 4.31f 3.8 4.52
ω1(N-H) (cm-1) 2916 2577 2607 2887
ω2(N-N) (cm-1) 1818 1931 1809 1862
ω3(bend) (cm-1) 1118 1106 1137 1086

Saddle Point for H+ N2 Reaction
R1 (a0) 2.124 2.173 2.139 2.125
R2 (a0) 4.135 4.231 4.190 4.136
R3 (a0) 2.685 2.641 2.703 2.688
V (Eh) -0.3399 -0.3399
∆Vg (kcal/mol) 10.60 11.34f 11.4 10.60
ω1(N-H) (cm-1) 1619i 1387i 1658i 1640i
ω2(N-N) (cm-1) 2155 2027 1980 2102
ω3(bend) (cm-1) 762 668 763 763

Saddle Point for H-N2 Isomerization
R1 (a0) 2.324 2.390 2.326
R2 (a0) 2.285 2.291 2.281
R3 (a0) 2.285 2.291 2.281
V (Eh) -0.2867 -0.2868
∆Vg (kcal/mol) 48.51 51.6 48.44
ω1(N-H) (cm-1) 2676 2753
ω2(N-N) (cm-1) 1660 1668
ω3(bend) (cm-1) 2278i 2295i

a From this work, from a fit to a Taylor-series-type expansion around
the stationary point; see text.b From ref 8.c From ref 6.d This work.
e Relative to the H+ N2 asymptote.f From ref 10; value extrapolated
to the complete basis set limit.g Relative to the global minimum.
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6 summarizes the properties obtained for other relevant station-
ary points, including the shallow van der Waals minimum in
Figure 5 for intermediate H-N2 distances.

Clearly, the current HN2 DMBE potential energy surface
provides an accurate representation of the properties of the
global minimum and the two most important transition states:
one that is associated with the reaction H+ N2 f NH + N,
and another that is associated with the HN2 isomerization
process. Specifically, the barrier height for the process HN2 f
H + N2 is predicted to be 10.6 kcal/mol before inclusion of the
zero-point energy correction. Thus, it lies slightly below the
11.3 kcal/mol extrapolation of Walch and Partridge,10 while
being very similar to the result reported by Gu et al.13 These
authors have used an aug-cc-pVQZ basis set and the CCSD(T)
method, having predicted a barrier height of 10.7 kcal/mol. As
they also observed, experience suggests that such a barrier may
be further reduced when larger basis sets and higher levels of
theory are used.8,13 The fact that our prediction lies slightly
below the best-available theoretical estimates may then provide
an indication that the DMBE-SEC method can reliably be used
to extrapolate the ab initio energies to the complete basis set/
configuration interaction limit.

We now turn to the global minimum, which is predicted in
the present work to be 4.5 kcal/mol above the H+ N2

asymptote. Thus, it lies close to the Walch and Partridge10

extrapolation of 4.31 kcal/mol and only slightly above the Gu
et al.13 prediction of 3.8 kcal/mol. This result may not be

surprising, because the literature shows that the estimated values
for the barrier height have a tendency to show a more stable
trend (∼11 kcal/mol) than the calculated exothermicity for the
reaction HN2 f H + N2. We may attribute such a behavior to
the fact that the exothermicity is dependent on the level of ab
initio theory and basis set used in a more subtle way3,8,10,13(the
best reported values cover the range of 3.0-5.6 kcal/mol). In
fact, the calculated values reflect the dificulties that are usually
encountered by the theoretical methods in describing both the
short-range and long-range interactions in a balanced way.

The saddle point for the HN2 isomerization process is located
at a T-shaped configuration prior to the conical intersection,
lying 48.5 kcal/mol above the H+ N2 asymptote. Both such
features are visible in Figure 5, being located along they-axis
at ∼2.0 a0. Thus, our estimated barrier height is somewhat
smaller than the value of 51.6 kcal/mol that was reported by
Walch,8 which may have implications on the lifetime of the
HN2 metastable species.

As shown in Figure 5, the present calculations predict aC2V
van der Waals minimum with a well depth of 0.07 kcal/mol,
relative to the H+ N2 asymptote. It is a very shallow minimum,
which indicates an almost-free rotation of the H atom around
N2. Thus, in reality, the correct location of the lowest energy
that is associated with such a weakly bound structure can hardly
be warranted to correspond to aC2V-type structure, despite the
care taken in performing the least-squares fit and the appreciable
number (46 in total) of ab initio points that have been calculated
for rH-N2 g 6.5 a0.

Tables 5 and 6 show that the spectroscopic properties of all
the stationary points in the DMBE potential energy surface are
similar to the frequencies obtained when a Taylor-series-type
expansion is instead used to fit a dense grid of energies in the
vicinity of such points. Indeed, the average percentage error in
the calculated frequencies is 1.0% for the global minimum,
saddle point for the H+ N2 reaction, and saddle point for the
HN2 isomerization.

Figure 7 shows a contour plot for the linear N-H-N
stretching. The main features are the two equivalent NH‚‚‚N
hydrogen-bond type structures, and the saddle point for the
H-atom exchange process. Note that such structures are not true
minima in three-dimensional configuration space, but rather are
linear transition states, as indicated by the dashed contours in
Figure 6. Indeed, they have a positive curvature with respect to
NH‚‚‚N stretching but a negative one with respect to bending.
Table 6 summarizes the geometries, energies, and vibrational
frequencies of such stationary points.

Finally, in Figure 8, we show a countor plot for theC2V
insertion of an H atom into N2. Although the dashed contours
might suggest the resulting linear configuration to be a
minimum, it is indeed a saddle point, because it has a negative
curvature with respect to the bending mode (H-atom insertion).
In fact, such a “minimum” corresponds, in reality, to the saddle
point that connects the two NH‚‚‚N hydrogen-bond type
structures that are observed in Figure 7. Also visible from Figure
8 is a shallow “minimum” located atrH-N2 ≈ 2.0 a0, which is
related to the saddle point that connects the two equivalent
metastable structures shown in Figure 5. Finally, for large atom-
diatom separations, we observe the very shallow H‚‚‚N2 van
der Waals minimum that has been already discussed previously
(see Figure 5 and Table 6).

5. Concluding Remarks

We have reported a single-valued DMBE potential energy
surface for ground-state HN2, on the basis of a realistic

Figure 8. Isoenergy contour plot for theC2V insertion of a H atom
into a N2 diatomic. Contours are equally spaced by 0.02Eh, starting at
-0.3641Eh. Contours in dashed lines are equally spaced by 0.002Eh,
starting at-0.0932Eh.

TABLE 6: Geometries and Energies of Other Important
Stationary Points

linear TS

property
van der Waals,

H‚‚‚N2 N-H‚‚‚N N‚‚‚H‚‚‚N

R1 (a0) 2.076 6.379 4.740
R2 (a0) 7.231 1.943 2.370
R3 (a0) 7.231 4.436 2.370
V (Eh) -0.3642 -0.1338 -0.0933
∆V (kcal/mol) -0.07a 2.26b 23.15b

ω1(N-H) (cm-1) 55 618 2163i
ω2(N-N) (cm-1) 2335 4711 538
ω3(bend) (cm-1) 14 138i 978

a Relative to the H+ N2 asymptote.b Relative to the N+ NH
asymptote.
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representation of the long-range forces and a fit to accurate ab
initio calculations. The various topographical features of the
new potential energy surface have been carefully examined and
compared with previous calculations for the title system, most
importantly, a potential energy surface that was previously
reported by Walch and collaborators.5,6,8,9The geometries and
spectroscopy of the main stationary points for the HN2 global
minimum, transition state for dissociation, and isomerization
barrier height are reproduced very accurately when compared
with the best available theoretical estimates. We emphasize that
the predicted barrier height for dissociation lies below the best
available estimates,10,13 which suggests that the DMBE-SEC
method offers a reliable means to extrapolate accurate correlated
energies to the basis set/configuration interaction limit. Thus,
we speculate that dynamics calculations that use the new
potential energy surface are likely to predict a lifetime for the
HN2 species that is even shorter than previously reported
estimates. Because the global minimum is predicted to lie 4.5
kcal/mol above the H+ N2 asymptote (which is slightly above
the best estimates reported in the literature), we further argue
that the stability of such a structure is yet unresolved, although
it definitely seems to be a metastable one. To summarize, the
DMBE potential energy surface reported in the present work is
globally valid and accurately fits our ab initio calculations and,
for that reason, is being recommended for future dynamics
studies of the H+ N2 f HN2 f HN + N reaction.
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